Déclaration de Conformité

Déclaration of Conformity

Sécurité fonctionnelle selon la norme IEC 61 508

Functional safety according to IEC 61 508

Régulateurs GEORGIN S.A.

14-16 rue Pierre Sémard – 92320 CHATILLON – France

Produits : Thermostats pour toutes associations Boîtier-contact-capteur listées dans le tableau ci-dessous.

Products: Temperature switches for all associations Case-switch-sensing element listed below.

<table>
<thead>
<tr>
<th>Gamme Boîtier</th>
<th>Série F Metal</th>
<th>Série G Composite</th>
<th>Série U Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry switches</td>
<td>F16 F16D F10 F10D F12V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Contacts Hermétiques | F92 F96* F98 | F92 | F92 |
| Nitrogen sealed switches |

| Contacts Etanches | F60 F60D F62* F62D* F10E F4E F6E* |
| Waterproof and airtight switches |

| Gamme Capteurs de température. Temperature sensing elements range. | Capillaire Capillary | CAP INOX option gaine INOX |
| CAP St, st. option capillary armour St, st. |

Les fonctions électriques peuvent être équipées d’un ou deux contacts.

(*) Les codes 6, 6D, 6E, 62, 62D et 96 doivent être utilisés avec le ressort d’écart inopérant/inhibé.

Electrical functions can be equipped with one or two switches.

(*) 6, 6D, 62, 62D and 96 codes must be used with an inoperative/suppressed dead band.

Reference : 1398/GEORGIN/CD4 Rév B
Date : 30/01/2012

Ce document ne peut être reproduit que dans son intégralité (3 pages) et sans aucune modification.
This document may only be reproduced in full (3 pages) and without any change.
ISO Ingénierie déclare, en tant qu'organisme indépendant d'évaluation, que les thermostats dont l'évaluation avec l'outil EvoluSIL® figure dans le rapport 1398/GEORGIN/D02 répondent aux caractéristiques suivantes : **Type A selon IEC 61508-2:2000**

Hypothèses pour calcul PFD:
- Test périodique $T_i = 1$ an
- $MTTR = 8$ heures

<table>
<thead>
<tr>
<th>PFD</th>
<th>Probabilité de défaillance à la sollicitation</th>
<th>F</th>
<th>G</th>
<th>U</th>
<th>PFD</th>
<th>Probability of Failure on Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>2,53E-04</td>
<td>3,25E-04</td>
<td>2,70E-04</td>
<td>St, st. capillary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFH</th>
<th>Probabilité de défaillance par heure</th>
<th>F</th>
<th>G</th>
<th>U</th>
<th>PFH</th>
<th>Probability of Failure per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>5,75E-08</td>
<td>7,40E-08</td>
<td>6,16E-08</td>
<td>St, st. capillary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SFF 64,3%

Ces valeurs sont valables uniquement dans les conditions d'utilisation précisées ci-après. Elles sont issues d'une analyse du retour d'expérience de Georgin, complétée par une Analyse des Modes de Défaillances et leurs Effets (AMDE).

Dans ces conditions d'utilisation, **les thermostats Georgin peuvent être utilisés sans redondance (HFT=0) pour des fonctions de sécurité jusqu'à SIL 2.**

ISO Ingénierie declares, as an independent assessment organization, that the temperature switches, whose the assessment with EvoluSIL® tool is detailed in 1398/Georgin/D02 report meet the following characteristics: **Type A according to IEC 61508-2:2000**

Hypothesis for PFD calculation:
- Proof test interval $T_i = 1$ year
- $MTTR = 8$ hours

<table>
<thead>
<tr>
<th>PFD</th>
<th>Probability of Failure on Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFH</th>
<th>Probability of Failure per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

These values are only valid in the working conditions specified here after. They come from a Georgin experience feedback, completed by a Failure Modes and Effects Analysis (FMEA).

In these working conditions, **Georgin temperature switches can be used as a single device (HFT=0) for safety functions up to SIL 2.**
Conditions d'utilisation en sécurité :

- Le produit doit être soumis à des tests périodiques et à une politique de maintenance, conformément à la norme IEC 61508. Le niveau SIL ne pourra être maintenu que dans une période de test (TI) ainsi qu'un temps moyen de réparation (MTTR) donnés.
- Les équipements peuvent être utilisés pour détecter une température à la hausse ou à la baisse.
- Les capteurs doivent être adaptés au produit et à l'environnement.
- (*) Les codes 6, 6D, 6E, 62, 62D et 96 doivent être utilisés avec le ressort d'écart inopérant/inhibé.
- Les équipements doivent avoir une configuration de câblage électrique à « sécurité positive ». Le circuit électrique ouvert étant la position de sécurité.
- Le produit et son installation doivent respecter les instructions de montage de raccordement, mise en service, utilisation et entretien définies dans les notices Georgan.
- Le produit doit être remplacé après 10 ans, à l'exception des contacts hermétiques F92, F96 et F98 devant être remplacés après 80000 cycles.

Safety use conditions :

- The product must be submitted to periodic proof test and to a maintenance policy, in accordance with IEC 61508 standard. SIL level will be maintained only within a given period of proof testing (TI) and a given mean time to repair (MTTR).
- Equipments can be used to detect a raising or a falling pressure (high or low trip).
- Sensing elements must be adapted to chemicals and environment.
- (*) 6, 6D, 62, 62D and 96 codes must be used with an inoperative/suppressed dead band.
- Equipments must have a failsafe wiring configuration. The open-circuit is the secure position.
- The product and its installation must respect the installation, wiring, commissioning, operation and maintenance instructions defined in Georgan manuals.
- The product must be replaced after 10 years, except for F92, F96 and F98 nitrogen sealed switches which must be replaced after 80000 cycles.

Taux de défaillance déterminés par l'Analyse des Modes de Défaillance et de leurs Effets (AMDE) :

<table>
<thead>
<tr>
<th>λ : taux de défaillance</th>
<th>F</th>
<th>G</th>
<th>U</th>
<th>λ : Failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>161 FIT</td>
<td>207 FIT</td>
<td>173 FIT</td>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

Nota : FIT = 10^9/h

<table>
<thead>
<tr>
<th>λₜ : Taux de défaillance sûre</th>
<th>F</th>
<th>G</th>
<th>U</th>
<th>λₜ : Safe failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>104 FIT</td>
<td>133 FIT</td>
<td>111 FIT</td>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

Nota : FIT = 10^9/h

<table>
<thead>
<tr>
<th>λ₀ᵤ : taux de défaillance dangereuse non détectée</th>
<th>F</th>
<th>G</th>
<th>U</th>
<th>λ₀ᵤ : Dangerous Undetected failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaire INOX gaine INOX</td>
<td>58 FIT</td>
<td>74 FIT</td>
<td>62 FIT</td>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

Nota : FIT = 10^9/h

Failure rates determined by Failure Modes and Effects Analysis (FMEA) :

<table>
<thead>
<tr>
<th>λ : Failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λₜ : Safe failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ₀ᵤ : Dangerous Undetected failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, st. capillary</td>
</tr>
</tbody>
</table>

ISO Ingénierie – 530 rue Fr. Hennebique, ZI Les Milles, 13854 Aix-en-Provence, FRANCE
http://www.iso-ingénierie.com – iso@iso-ingénierie.com